a The Ruby Language

Chauk-Mean PROUM
March 2007

'GEFEFLELION

Object-Oriented and Meta-Programming

This document is placed in Public Domain through
the Creative Commons licence.

Ruby and Ruby logo are copyrighted by Yukihiro
Matsumoto.

Java and Java logo are copyrighted by Sun
Microsystems.

Python and Python logo are copyrighted by the
Python Software Foundation.

PHP and PHP logo are copyrighted by the PHP
Group.

Groovy and Groovy logo are copyrighted by The
Codehaus.

selfreflexion.free.fr

The latest trends in Programming

Languages are :

‘Dynamic Typing

‘Functional Programming

‘Domain Specific Language (DSL)
And

Whenever you learn a new language,
it changes the way you think.

(Bruce Tate, author of "Better, Faster, Lighter Java”, "Beyond Java”,...,
“From Java to Ruby”, “Ruby on Rails : Up and Running" ,..)

selfreflexion.free.fr

Ruby was created in 1995
(V1.0) in Japan by Yukihiro
"Matz" Matsumoto.

It has come to Western |
Countries only in 2000. FOLLE

f\.
(%
= Smalltalk - unfamiliar syntax

+ PERL 's scripting power

+ Python 's exceptions eftc.

+ CLU 's iterator

+ a lot more good things

- selfreflexion.free.fr

Freedom and Comfort

* Freedom : there is more than one way of
doing things

» Comfort : the "better" way is made
comfortable (a.k.a. the Ruby way)

selfreflexion.free.fr

* a Scripting Language
- a Dynamic Typing Language
- an Object Oriented Programming Language

» a good taste of Functional Programming

- a highly Reflective Language

- a base for creating Domain Specific Languages

selfreflexion.free.fr

* Ruby Description

Scripting, Dynamic Typing, Object Oriented,
Functional Programming, Reflection, DSL

* More Ruby vs. Others
C++, Java, Python, Groovy, and PHP
* More on Ruby

selfreflexion.free.fr

a Ruby : a Scripting Language

selfreflexion.free.fr

Ruby :

A Scripting Language is for gluing existing
applications/components :

- easy to write

* typically interpreted (no explicit compilation
required)

* typically dynamically typed for favouring rapid
development over efficiency of execution

- strong at communicating with program components
written in other languages

selfreflexion.free.fr

Ruby : a Scrig

////,

o a Ruby
ruby_scripting_language.rb

STDOUT.sync = true # just to disable output buffering

one can define directly a function
def get ruby files

getting the output of a shell command
rb_files = "dir /B *.rb’

end
no need for defining the main function

puts "Ruby files found in current directory :"
puts get_ruby_files

puts "Launch the notepad ?"
answer = gets

launching the notepad conditionnally with a regular expression
system("notepad.exe") if answer =~ /[yY]/

selfreflexion.free.fr

From Perl, Ruby
picks up a lot of
Unix shell
programming
features and
built-in regular
expressions™.

*The power of Perl
and Unix tools like
sed and awk comes
from their built-in
support for regular
expressions.

a Ruby : a Dynamic Typing

Language

selfreflexion.free.fr

Ruby : a Dynamic Typ

duck_typing.rb

Ruby

A Programmer’s Best Friend

. class Duck
DUCk TYP'"Q d:Zttsal'l:]uack! Quack!'
end

(Dave Thomas, author of def walk

”Prog/"amm/ng RUbyu, and ”Ag/'/e eﬁgts 'Walking like a duck I

Web Development with Rails") end
class Bird
def talk

" . . puts ‘Tweet-tweet!'
- "If an object walks like a end
. . def fl

duck and talks like a dUCk, by putsy'FIyininkeabird I
end

mUST be a dUCk.“ end

° The T)ﬁpe of an ObiZCT |S # Just create two "ducks"

a_duck = Duck.new

defined by what that object a_fake_duck = Bird.new

can dO (Clnd not by its # Just look at the first duck
- . a_duck.talk # it talks like a duck
class/interf ace), a_duck.walk # it walks like a duck

Just look at the second duck
a_fake_duck.talk # it talks like a duck
a_fake_duck.walk # Oups ! it doesn't walk like a duck

testing an object's capability in a duck typing way if really needed
a_fake_duck walk if a_fake_duck.respond_to?(:walk)

selfreflexion.free.fr

Ruby : a Dynamic Typ

In Java, an interface allows different
classes (implementations) to be used

interchangeably.
/I Javalnterface Java (
import java.lang.System; ";,g)
interface TalkingAnimal { Java
void talk(); e
}

class Duck implements TalkingAnimal {
public void talk() {
System.out.printin("Quack! Quackl!");
}
}

class Bird implements TalkingAnimal {
public void talk() {
System.out.printin(" Tweet-twest!");
}
b

class Javalnterface {
/ talkTalk accepts any object complying with the interface
public static void talkTalk({TalkingAnimal animal) {
animal.talk();
animal.talk();

}

public static void main(String[] args) {
Duck a_duck = new Duck();
talkTalk{a_duck);
Bird a_bird = new Bird();
talkTalk(a_bird);
}
b

selfreflexion.free.fr

In Ruby, there is no need
for interface.

Any object responding to the
relevant methods is suitable.

ruby_no_interface.rb

class Duck
def talk
puts '‘Quack! Quack!'
end

end y / BUbyB -
class Bird
def talk
puts Tweet-tweetl
end
end

def talk_talk(animal)
animal.talk
animal.talk

end

a_duck = Duck.new
talk_talk(a_duck)
a_bird = Bird.new
talk_talk(a_bird)

Ruby : a Dynamic Ty

Benefits : Simplicity
and Flexibility

Ruby Collections are more
simple and more flexible to
use than their Java
counterparts :

- no need for downcast

- support for heterogeneous
elements

selfreflexion.free.fr

ruby_menagernie.rb ' Ruby

rogrammer’s Best Friend

class Duck
def talk
puts 'Quack! Quack!’
end

def walk
puts "Walking like a duck!’
end
end

class Bird
def talk
puts Tweet-tweet!'
end

def fly
puts Flying like a bird!"
end
end

class Rabbit
def jump
puts "Jumping like a rabhit!’
end
end

Putting a duck, a kird, and a rabbit in an array
menagerie = {"my duck"=>Duck.new, "my hird"=>Bird.new, "my rabhit"=>Rabhit.new}

Gef the duck

duck = menagerie["'my duck"] # no need for downcast to a Duck |
duck.talk

duck.walk

Gef the bird

bird = menagerie["my bird"] # no need for downcast to a Bird !
bird.talk

fird.fly

Gef the rabbif
rabhit = menagerie["my rabhit"] # no need for downcast to a Rabbit !
rabhit.jump

Ruby : a Dynamic Typ

Java untyped
collections

support
heterogeneous
elements but

require
downcast.

selfreflexion.free.fr

f JavalUntypedMenagerie java (
import java.lang.System; ‘,_S)
import java.util.HashMap; ‘«-E_-'_I
import java.util.Map;]a\fa'
class Duck { e

public void talk() {

System.out.printin{"Quack! Quack!™);
}

public void walk() {
System.out.printin{"Walking like a duck!");
}
h

class Bird {
public void talk() {
System.out.printin{" Tweet-tweetl");
}

public void fly() {
System.out.printin{"Flying like a bird!");
}
h

class Rabbit {
public void jump() {
System.out.printin{"Jumging like a rabhitl™);
}
h

public class JavalntypedMenagerie {
public static void main{String([] args) {
Map menagerie = new HashMap();
menagerie.put{"my duck”, new Duck({));
menagerie.put("my bird”, new Bird());
menagerie.put("my rabbit", new Rabbit());

Cbject duckObject = menagene.get("my duck");
Il downcast is needed !

Duck duck = (Duck)duckObject;

duck.talk();

duck.walk():

Object birdOhject = menagerie.get("my bird");
Il downcast is needed !

Bird bird = (Bird)hirdOhject;

bird.talk();

bird.fly();

Cbject rabbitObject = menagerie.get("my ralbit™);
Il downcast is needed |

Rabbit rabbit = (Rahbit)rabhitObject;
rabbitjump();

h

Java typed
collections do

not support
heterogeneous
elements but
avoid (most)
downcast.

I JavaTypedMenagerie java (
import java.lang.System; .»__(.
import java.util. HashMap; ';:_')
impaort java.util. Map; J‘;:‘T—'g
interface TalkingAnimal { s
void talk();
}
class Duck2 implements TalkingAnimal {
public void talk() {
System.out.printin{"Quack! Quack!™);
}

public void walk() {
System.out.printin("Walking like a duck 1");
H
h

class Bird2 implements TalkingAnimal {
public void talk() {
System.out.printin("Tweet-tweet!l”);

}

public void fly() {
System.out.printin{"Flying like a bird I);
}
h

class Rabhit2 {
public void jump() {
System.out.printin{"Jumping like a rabbit!l");
H
h

class JavaTypedMenagerie {
public static void main{3tring[] args) {
Map<String, TalkingAnimal> menagerie =
new HashMap<String, TalkingAnimal=>();

menageriz.put("my duck”, new Duck2());
menagerie.put("'my bird”, new Bird2());

M menagerie.put("my rabbit”, new Rabbit2());
/i cannot put 2 Rabbit2 (type mismatch)

TalkingAnimal duckOhject = menagerie.get("my duck”);
duckOhject.talk(); # a talking animal can talk

I downcast is needed for other capabhility

Duck? duck = (Duck2)duckObject;

duck.walk():

TalkingAnimal birdObject = menagerie.get{"my bird");
birdObject.talk(); # a talking animal can talk
/Il downcast is needed for other capability
Bird2 bird = (Bird2)birdOhject;
bird.fly();
}

h

Ruby : a Dynamic Typ

Drawbacks ?

Static Typing Language Compile Time Checking

vs. —, vs.

Dynamic Typing Language but : Runtime Checking

» Compiling doesn't mean it executes properly
» The only guarantee of correctness, ..., is whether it passes all the
tests that define the correctness of your program

- What we need is strong testing, not "strong" typing

"Strong" Typing vs. Strong Testing
(Bruce Eckel, author of "Thinking in C++", "Thinking in Java", "Thinking in Python")

selfreflexion.free.fr

Ruby : a Dynamic Typi

You can create a large, complex and safe system with
a (good) dynamic language.

Example :

-
[i (A.K. Erlang but also ERicsson LANGuage)
ERLANG

A functional and dynamic typing language designed by Ericsson to
support distributed, fault-tolerant, soft-real-time, non-stop
applications.

selfreflexion.free.fr

Ruby : a Dynamic Typ

Safe Type Conversion
(a.k.a. "Strong Typing")

Rub
ruby_strong_typing.rb a phaec A

foo=2

Type Conversion in Ruby is bar =2 3

Safe conversion from Fixnum to Float

. acme = foo / bar
automatically per'for"m.ed only e aome
if it is safe.

foo ="4";

bar=2.5;

acme = foo + bar; # TypeError exception !
puts acme

<?php // php_weak_typing.php

Conversely, PHP and PERL oo o
perform error prone automatic Sbar=72;

. $acme = $foo + $bhar,
conversion. echo "$acme\n"; // outputs 6

(lack of exception support from $foo = "Hello World";
$acme = $foo + $bar;

dC(y one ? lack of excepfion echo "$acme\n"; // outputs 2 !!
7>
culture ?)

selfreflexion.free.fr

Ruby : a Dynamic T

. #4 Rub
ruby_coercion.rb ‘ ALY peirins

class Complex

def initialize(r, im)

@r=r

A Ruby custom class @im = im
. end
may however define a
. ep . # conversion to a string
safe conversion (if it 4 def to_str
"#l{@r} + #H@im}i”
really makes sense). 4 end
end

creates an instance of Complex

¢ = Complex.new(2, 2)

TypeError exception unless to_str is defined
msg = "Complex number : "+ ¢

puts msg

selfreflexion.free.fr

a Ruby : an Object-Oriented
Language

selfreflexion.free.fr

Ruby : an Object-Orie

&8 Ruby

A Programmer’s Best Friend

ruby_full_object.rb

Everything in Ruby puts 'a string'.class

puts 3 class

IS ObJeC'l' . # literal syntax for creating an array

a=1[1, "hello"]

Equivalent to

a = Array.new
#a << 1 << "hello"

Built-in classes have a puts a.class
. . puts a.inspect
dedicated and friendly
literal syntax for creating a hash

" . "
syntax ("syntactic sugar"). h={ keyl=> 1, "key2" => "hello"}
Equivalent to
h = Hash.new
#h[key1] =1
h["key2"] = "hello"
puts h.class
puts h.inspect

literal syntax for creating a regular expression
re =/e/

Equivalent to

re = Regexp.new('e’)

puts re.class

puts "Hello" =~ re # returns 1 the position of e
puts "Allo" =~ re # returns nil for not found

selfreflexion.free.fr

Ruby : an Object-Orie

50)

Top level
functions are in
fact private
methods of the
'main' object.

Ruby is a fully OO
language that can
masquerade as a
procedural language !

selfreflexion.free.fr

ruby top level func.rb
puts self.inspect
define 2 top level functions
def my hello
puts "Hello"
end
def my_goodbye
puts "Goodbye"
end

call these 2 functions

my_hello
my_goodbye

search these 2 functions within the private functions of 'main’

my_functions = private_methods.select { |m| m=~/my _/}

puts my_functions.inspect

&3 Ruby
A Programmer’s Best Friend

Ruby : an Object-Ori:

i

The primary goal of OO is to reflect real
world :

* inheritance : specific / general relationship

» encapsulation : the inside is protected
from the outside

selfreflexion.free.fr

Ruby : an Object-Orie

Rub

A Programuner’s Best Friend

a

ruby_encapsulation.rb

class HelloWorld
attr_accessor :an_attribute
Generates the following accessors

Ruby ensures encapsulation :

def an_attribute()

- an attribute is always private. [@an_attribute
The access to the attribute are # def an_attribute=(value)
. # @an_attribute = value
possible only through methods #end
("accessors"). def initialize
@an_attribute = "?"
- an attribute can be defined only end.
Wl*hln ITS CIC(SS deflnl'l'lon # creates an instance of HelloWorld

c = HelloWorld.new

tries to access directly to the attribute
msg = c.@an_attribute

sets the value of the attribute

Ruby's accessors look like real c.an_attribute = "Hello World"
. . # eq. to c.an_attribute=("Hello World")
GTTr' bUTeS (RUby SynTGCTI C Sugar' # gets the value of the attribute

puts c.an_attribute

C(gCll n) l # eq. to puts c.an_attribute()

tries to create an attribute from the outside
c.@other_attribute = "Goodbye World"

selfreflexion.free.fr

Ruby : an Object-Orie

python_encapsulation.py = plzlthon

class HelloWorld:

PY"'hon iSs more lax | def _init_ (self):

self.an_attribute = "?"

def print_message(self):
print self.an_attribute

Python has no visibility
. # creates an instance of HelloWorld
mechanism | ¢ = HelloWorld()

calls a method accessing the attribute
c.print_message

violates the encapsulation principle of a Class
reads the attribute

msg = c.an_attribute

print msg

vrites the attribute
c.an_attribute = "Hello World"
print c.an_attribute

violates again the encapsulation principle of a Class

c.other_attribute = "Goodbye World"
print c.other_attribute

selfreflexion.free.fr

Ruby : an Object-Ori:

i

For Ruby (unlike C++
and Java) :

- private really
means private

Another instance of
the same class / a
derived class cannot
access to a private
member

- protected means

accessible only

within a family
Another instance of
the same class / a
derived class can

access fo a
protected member

selfreflexion.free.fr

&3 Ruby

A Programmer’s Best Friend

ruby_privacy.rb

class Person
def initialize(info)
@private_info = info
end

def display
puts @private_info
end

def exchange(other)

works only if accessors are protected
self.private_info, other.private_info =
other.private_info, self.private_info

end

private

protected

attr_accessor :private_info
end

creates two Persons

p1 = Person.new("Person1")
p1.display

p2 = Person.new("Person2")
p2.display

p1.exchange(p2)
p1.display
p2.display

class Person {

/I JavaPrivacy.java ((
import java.lang.System;

private String privatelnfo;

public Person(String info) {
privateInfo = info;

}

public void display() {
System.out.printin(privatelnfo);

}

public void exchange(Person other) {
/I another instance of the same class
// has access to private members !
String temp = privatelnfo;
privatelnfo = other.privatelnfo;
other.privatelnfo = temp;

}

B

class JavaPrivacy {

public static void main(String[] args) {
Person p1 = new Person("Person1");
pl.display();
Person p2 = new Person("'Person2");
p2.display();

pl.exchange(p2);
p1.display();
p2.display();

Ruby : an Object-Ori:

i

Java's single inheritance is annoying :
reusing code from another class
requires adapter code.

C++ multiple inheritance is powerful
but is very complex.

Ruby's mix-in feature provides the
power of multiple inheritance without
its complexity.

selfreflexion.free.fr

iy Rub
ruby_mixins.rb ﬂ Apmgmymesrmm

module Walking
def walk
puts inspect + " can walk"
end
end

class Human
end

class Man < Human
a man can walk
include Walking
end

class Baby < Human
a baby is too young for walking
end

class Animal
end

class Duck < Animal
a duck can walk also
include Walking

end

creates a man and a duck
m = Man.new
m.walk

d = Duck.new
d.walk

Ruby : an Object-Ori:

i

You're not forced to derive a
class just to extend its
capabilities.

You can reopen it !

Benefits :

You use naturally the same
class.

Useful also if you do not
control how objects are
created (you cannot instantiate
a derived class instead of the
base class).

selfreflexion.free.fr

a EUby’B Friend
ruby open_class.rb ’

s1 = "Hello, Real World !"
puts s1

Reopen the built-in String class
to add a funny method
class String
def very useful _change
self.gsubl(/e/, 'a’)
self.gsubl(/o/, 'U’)
end
end

puts s1.very useful _change

Ruby : an Object-Ori:

i

If you reopen a class and add methods to it, all existing
instances will benefit from them.

But you can also just add methods to a given instance if you

don't want to impact other instances.
. a Ruby
ruby_singleton_class.rb

s1 ="Hello, Real World I"
s2 = "Goodbye I"
puts s1, s2

Just add the funny method only for s1!
def s1.very _useful change
self.gsubl(/e/, 'a’)
self.gsubl(/o/, 'U')
end

puts s1.very useful change
puts s2.very _useful_change # NoMethodError exception !

DRb (Distributed Ruby) uses this feature to indicate whether an object
will be transmitted by value or by reference (through a module inclusion).

selfreflexion.free.fr

a Ruby : a good taste of
Functional Programming

selfreflexion.free.fr

Functional programming languages are a class of languages designed to
reflect the way people think mathematically, rather than reflecting the

underlying machine. [Goldberg]

"Functional programming is a style of programming that emphasizes the
evaluation of expressions, rather than execution of commands.

The expressions in these language are formed by using functions to combine
basic values.

A functional language is a language that supports and encourages
programming in a functional style." [comp. lang. functional FAQ]

"A functional language does not allow any destructive
operation — one which overwrites data — such as assignment.

Purely functional languages are free of side effects, i.e.,

invoking a function has no effect other than computing the value returned by
the function." [NIST]

selfreflexion.free.fr

Functional F

[|
unctional Progre
#ruby_fp_examples.rb

Rub

A Programuner’s Best Friend

o

» Every symbol is final in (pure)
Functional Programming

x = f(y) just means wherever you
have x, you can replace it with
f(y) and vice-versa.

- Repetition is expressed via
recursion.

- Higher-Order Function : a
function that takes / returns
functions as parameters

- Stack is the rule (over Heap).

Benefits :

* Unit Testing is easier (no side-
effects)

» Concurrency is provided as free
(e.g. ERLANG)

selfreflexion.free.fr

#f1(x) = 3"
f1 =lambda { |x| 2*x }

f1 is not expected/allowed to be bound to another thing in FP

puts f1[2]

factorial in a functional way
(recursion, stack, no assignment)
factorial =lambda { [n| n==0 ? 1 : n*factorial[n-1] }

puts factorial[(], factorial[5]

factorial in an imperative way
(loop, assignment)
def imperative_factorial(n)
return 1 if n ==
fact=1
foriin(1..n)
fact = fact*i
end
fact
end

puts imperative_factorial(0), imperative_factorial(5)

higher-order function
def compose(f, g)

lambda { |*args| fl[g[*args]] }
end

gl =lambda { |x]| 2+x } #g1(x) = 2+x
h1 = compose(f1, g1) #h1(x) =f1(g1(x))
puts h1[2] #h1(2]=> 12

g2 =lambda { |x, y| x*y } #g2(x,y) = x+y
h2 = compose(f1, g2) #h2(x,y) = f1(g2(x,y))
puts h2[5,7] # h2(5,7) => 36

Functional

()

s

Ruby is not a (pure) Functional
Programming Language but it

Ruby methods notably from the
Enumerable module take an
anonymous function as a
parameter : a Ruby block.

You can write Functional
Programs in Ruby if you avoid
side-effects.

favours Functional Programming.

Rub
#ru by_fp_pr omotion.rb a ApmgmmnX's Best Friend

an array of values
values =[1, 2, 3, 4, 5]

outputs each value
sum = values.each { |elem| print elem }
puts

sum the values from the array
sum = values.inject(0) { |acc, elem| acc+elem }
puts sum

creates a new array of values
other_values = (1..5).inject([]) { |acc, elem| acc+[elem*] }
puts other_values.inspect

creates an array of values that are less than 3
lessthan3_values = values.select { |elem| elem < 2 }
puts lessthan3_values.inspect

Note : A pure Functional Language must interface with the "real" side-effects

world for Graphics, Input/Output.

selfreflexion.free.fr

Functional F

)0
////

Ruby Blocks are
much easier
than Java
classes for
implementing
callbacks.

Ruby Blocks are
real closures :
they capture
their context.
They allow easy
communication
between the
block and its
context.

selfreflexion.free.fr

#8 Ruby

A Programuner’s Best Friend

ruby_callback.rb

class Button
attr_reader :id

def initialize(id)
@id =id
end

def attach(&block)
@block = block
end

def click
The button will be passed fto the callback
This is the contract for the callback
@block.call self
end
end

b1 = Button.new("Button1")
b1.attach { |b] puts "#{b.id} clicked I" }

n=0

b2 = Button.new("Counter Button")

Ruby blocks are closures.

They capture their environment (e.g. n variable).
b2.attach { |b| n += 1; puts "Counter = #{n} from "#{b.id}" }

Simulates clicks on buttons
b1.click

b2.click

b2.click

puts "n = #{n}"

I JavaCallback.java

import java.lang.System; ()
R

// The ButtonCallback interface —_—

interface ButtonCallback {]ava

void onClick(Button b);
}

// The Button interface

interface Button {
String id();
void attach(ButtonCallback cb);
void click();

}

{// The Button implementation
class Buttonlmpl implements Button {
String id;
ButtonCallback cby;
public Buttonlmpl(String id) { this.id =id; }
public String id() { return id; }
public void attach{ButtonCallback cb) { this.cb =cb; }
public void click() { ch.onClick(this); }
}

// The ButtonCallback Counter implementation
class ButtonCallbackCounterlmpl implements ButtonCallback {
int n;
public ButtonCallbackCounterlmpl(int n) { this.n =n; }
public int counter() { return n; }
public void onClick(Button b) {
n+=1;
String completeMessage = "Counter =" +n + " from ™ + b.id() +
System.out.printin{fcompleteMessage);
}
}

class JavaCallback {
public static void main(String[] args) {
Button b1 = new ButtonImpl("Button1");
/f Creates and attaches an anonymous class for the basic button callback
b1.attach{new ButtonCallback() {
public void onClick(Button b) {
String completeMessage = """ + b.id() + " clicked I";
System.out.printin{completeMessage);
}
W

Button b2 = new ButtonImpl("Counter Button");

// Creates a dedicated callback class for storing the number of clicks
ButtonCallbackCounterlmpl chc = new ButtonCallbackCounterlmpl(0);
b2.attach{cbc);

b1.click();
b2.click();
b2.click();
System.out.printin{cbc.counter());

a Ruby : a highly Reflective
Language

selfreflexion.free.fr

Meta-programming :
The writing of programs that write or manipulate
other programs (or themselves).

Benefit : Less code is written manually.

Meta-language
The language in which the meta-program is written.

Reflective Language

A programming language whose meta-language is
itself.

selfreflexion.free.fr

Meta-programming & Encapsulation :

* You're normally force to follow encapsulation.
This is the normal and preferred way.

* But if you have a good reason, you can break
encapsulation with Ruby meta-programming
features.

selfreflexion.free.fr

Ruby

The classical example of Ruby meta-
programming :

attr_reader, attr_writer,
attr_accessor.

These are just class methods that
generate respectively read, write, both
read and write accessors for a given

instance variable.

& Rub
ruby_a trr_exampfe_ rb ‘ APragmmme}{’s Best Friend

class MyClass
attr_reader :fixed_message
attr_accessor :changeable _message

def initialize
@fixed_message = "Hello!"
end
end

o = MyClass.new

puts o.fixed_message
o.changeable_message = "A message!"
puts o.changeable_message

selfreflexion.free.fr

&8 Ruby

A Programiner’s Best Friend

ruby_attr_definition.rb

Reopen the class Class to add Java like accessors generator
class Class
generator method (string evaluation version)
def string_atir accessor(name)
class_eval <<-"end_eval"
def get_#{name}
@#{name}
end

def set_#{name}{value)
@#name} = value
end
end_eval
end
generator method (code version)
def code atir accessor(name)
class_eval do
define_method "get_#{name}" do
instance_variable_get "@#{name}"
end

define_method "set_#{name}" do |value|
instance_variable_set "@#{name}", value
end
end
end
end

class MyClass
string_aftr_accessor attribute
code_attr_accessor :attribute

def initialize(valug)
@attribute = value
end
end

a = MyClass.new("Hello")
puts a.get_attribute()
a.set_attnbute("Goodbye")
puts a.get_attribute()

You can also generate code
automatically upon some events :

- a missing method is called on an
object

- a module is being mixed-in

- a class is being inherited

- a method is being added, removed

AOP (Aspect Oriented Programming)
can be implemented
straightforwardly in Ruby !
(aspectr).

selfreflexion.free.fr

ruby_logger.rb Ruby

class Logger

keeps track of methods that have already been treated

@@methods =[]

def self.method_added(method_sym)
skip the original methods and the decorated ones
unless @@methods.find { || e == method_sym }

orig_method_sym = "orig_#{method_sym}".to_sym
@@methods << method_sym << orig_method_sym

alias the method before redefining it
alias_method orig_method_sym, method_sym

define_method method_sym do |*args|
puts "-Entering #{method_sym}"
send orig_method_sym, *args
puts "-Exiting #{method_sym}"

end

end
end
end

class MyClass < Logger
def hello(message)
puts "Hello #{message}"
end

def goodbye(message)
puts "Goodbye #{message}"
end

a = MyClass.new
a.hello("World")
a.goodbye("My Friend")

A Programmer’s Best Friend

a Ruby : a base for creating

A

selfreflexion.free.fr

Syntax does matter !

Ruby's syntactic sugar is one of the key point that makes DSL
in Ruby very easy.

&8 Ruby
ru b y_ d S l" rb ‘ A Programumer’s Best Friend

Ruby doesn’t require parenthesis around the method argument
def display arg

puts arg.inspect
end

display "Hello"
Equivalent to display("Hello")

The braces are optional for a hash parameter

display :title => "Message", :description => "Hello"
Equivalent to
display({display title => "Message", :description => "Hello"})

selfreflexion.free.fr

Ruby : a base for ¢

Example of DSL in Ruby : Rake

&3 Ruby
ruby rake dsl.rb ‘ . . .
- A Build Language written in Ruby.
require 'rake' Benefits :
task ‘taskA do * Readable syntax.
puts "Task A stuff"
end » Full access to the power of Ruby.

task looks like a keyword but is just a

task :taskB => :taskA d
ast 1o s e regular Ruby method

puts "Task B stuff"

end the task name (:taskC) and
task taskC =>W‘ the task requisites (:taskA)

puts "Task C stuff" are just defined by a hash

end
What the task has to do is just
task :taskD => [:taskB, :taskC] do defined by a Ruby block
puts "Task D stuff"
end

selfreflexion.free.fr

Ruby : a base fc

Ruby open class is
another key point
for DSL.

selfreflexion.free.fr

&3 Ruby

A Programmer’s Best Friend

ruby_time_dsl.rb

Reopen the built-in Fixnum to represent time in seconds
class Fixnum
def day
self.hour * 24
end

def hour
self.minute * 60
end

def minute
self * GO
end

def second
self
end
end

Reopen the built-in Time to add useful methods
class Time
def tomorrow

self + 1 .day
end
def yesterday
self - 1.day
end
end

Time is a built-in class

t=Time.now # Gives the current time
puts t

puts t.tomorrow

puts t + 2.day + 2. hour

LA

More Ruby vs. C++, Java,
Python, 6roovy, PHP

selfreflexion.free.fr

+ C++ is statically typed,

+ C++ is complex,

- C++ meta-programming is only static (template).
+ C++ doesn't have introspection.

Conversely, Ruby has garbage collection but is
slower.

selfreflexion.free.fr

» Java is statically typed.
- Java supports only single inheritance.

» Java meta-programming is only static (before
class loading and through Javassist) but Java
supports introspection.

- Java is too verbose.

- Java doesn't have neither (yet) closure nor
favours Functional Programming.

selfreflexion.free.fr

or
i

@, python

Python has similar capabilities as Ruby but :
- is less Object-Oriented (e.g. encapsulation)

* lacks uniformity (e.g. function vs. method)

* meta-programming is less favoured / natural
» doesn't enable DSL creation

Python has a different philosophy :

"There is only one way to do it"

selfreflexion.free.fr

PHP (PHP: Hypertext Preprocessor) : @

A reflective and dynamic programming language
originally designed for producing dynamic Web pages
and remote application software.

Drawbacks :

* OO has been added lately and is still not yet
complete (no class method ...)

* The library is procedural |

* No namespace support | Everything is in the global
space |

selfreflexion.free.fr

Groovy has been created to add dynamic-style

language features on top of Java. E H

Heavily influenced by Ruby !

Not (yet?) as powerful as Ruby (open class, ..).
Syntax simplification limited to remain close to Java.

It seems to be too late for Groovy :

* Charles Nutter (JRuby core developer) : "we believe Ruby is
a better language than we could design ourselves (or design
based on Java with dynamic language features) and so we aim
to support pure Ruby as closely as possible"

* Ruby has now a greater community and audience
(conferences, library of books, ..)

* Ruby is supported by SUN (through JRuby)

selfreflexion.free.fr

a More on Ruby

selfreflexion.free.fr

The current official implementation (1.8.x) :
- an interpreter
- green threads

The Ruby 2.0 official implementation -

YARV (Yet Another Ruby Virtual Machine) :

» a Virtual Machine with specific Ruby byte-code
* native threads

Current measures : 3.5x faster than interpreter
version.

Ruby 1.9 expected for Christmas 2007.

selfreflexion.free.fr

An implementation of Ruby 1.8.x on the Java
Virtual Machine :

- speed of the Java VM
* native threads

+ Benefit : JRuby provides the access of Java
platform and libraries to Ruby.

+ Drawback : YARV will likely be more effective
than JRuby.

selfreflexion.free.fr

Ruby is for Java what Java is for C/C++ |
There are good Java, C/C++ frameworks/libraries.

Ruby typically wraps and/or integrates these
technologies (e.g. JRuby, RubySQLite, ..).

selfreflexion.free.fr

That's all folks !

selfreflexion.free.fr

