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The latest trends in Programming

Languages are :

‘Dynamic Typing

‘Functional Programming

‘Domain Specific Language (DSL)
And

Whenever you learn a new language,
it changes the way you think.

(Bruce Tate, author of "Better, Faster, Lighter Java”, "Beyond Java”,...,
“From Java to Ruby”, “Ruby on Rails : Up and Running" ,..)
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Ruby was created in 1995
(V1.0) in Japan by Yukihiro
"Matz" Matsumoto.

It has come to Western |
Countries only in 2000. FOLLE

f\.
(%
= Smalltalk - unfamiliar syntax

+ PERL 's scripting power

+ Python 's exceptions eftc.

+ CLU 's iterator

+ a lot more good things
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Freedom and Comfort

* Freedom : there is more than one way of
doing things

» Comfort : the "better" way is made
comfortable (a.k.a. the Ruby way)

selfreflexion.free.fr



* a Scripting Language
- a Dynamic Typing Language
- an Object Oriented Programming Language

» a good taste of Functional Programming

- a highly Reflective Language

- a base for creating Domain Specific Languages

selfreflexion.free.fr



* Ruby Description

Scripting, Dynamic Typing, Object Oriented,
Functional Programming, Reflection, DSL

* More Ruby vs. Others
C++, Java, Python, Groovy, and PHP
* More on Ruby
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a Ruby : a Scripting Language
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Ruby :

A Scripting Language is for gluing existing
applications/components :

- easy to write

* typically interpreted (no explicit compilation
required)

* typically dynamically typed for favouring rapid
development over efficiency of execution

- strong at communicating with program components
written in other languages
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Ruby : a Scrig

////,

o a Ruby
# ruby_scripting_language.rb

# STDOUT.sync = true # just to disable output buffering

# one can define directly a function
def get ruby files

# getting the output of a shell command
rb_files = "dir /B *.rb’

end
# no need for defining the main function

puts "Ruby files found in current directory :"
puts get_ruby_files

puts "Launch the notepad ?"
answer = gets

# launching the notepad conditionnally with a regular expression
system("notepad.exe") if answer =~ /[yY]/
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From Perl, Ruby
picks up a lot of
Unix shell
programming
features and
built-in regular
expressions™.

*The power of Perl
and Unix tools like
sed and awk comes
from their built-in
support for regular
expressions.




a Ruby : a Dynamic Typing

Language
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Ruby : a Dynamic Typ

# duck_typing.rb

Ruby

A Programmer’s Best Friend

. class Duck
DUCk TYP'"Q d:Zttsal'l:]uack! Quack!'
end

(Dave Thomas, author of def walk

”Prog/"amm/ng RUbyu, and ”Ag/'/e eﬁgts 'Walking like a duck I

Web Development with Rails") end
class Bird
def talk

" . . puts ‘Tweet-tweet!'
- "If an object walks like a end
. . def fl

duck and talks like a dUCk, by putsy'FIyininkeabird I
end

mUST be a dUCk.“ end

° The T)ﬁpe of an ObiZCT |S # Just create two "ducks"

a_duck = Duck.new

defined by what that object a_fake_duck = Bird.new

can dO (Clnd not by its # Just look at the first duck
- . a_duck.talk # it talks like a duck
class/interf ace), a_duck.walk # it walks like a duck

# Just look at the second duck
a_fake_duck.talk # it talks like a duck
a_fake_duck.walk # Oups ! it doesn't walk like a duck

# testing an object's capability in a duck typing way if really needed
# a_fake_duck walk if a_fake_duck.respond_to?(:walk)
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Ruby : a Dynamic Typ

In Java, an interface allows different
classes (implementations) to be used

interchangeably.
/I Javalnterface Java (
import java.lang.System; ";,g)
interface TalkingAnimal { Java
void talk(); e
}

class Duck implements TalkingAnimal {
public void talk() {
System.out.printin("Quack! Quackl!");
}
}

class Bird implements TalkingAnimal {
public void talk() {
System.out.printin(" Tweet-twest!");
}
b

class Javalnterface {
/ talkTalk accepts any object complying with the interface
public static void talkTalk({TalkingAnimal animal) {
animal.talk();
animal.talk();

}

public static void main(String[] args) {
Duck a_duck = new Duck();
talkTalk{a_duck);
Bird a_bird = new Bird();
talkTalk(a_bird);
}
b
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In Ruby, there is no need
for interface.

Any object responding to the
relevant methods is suitable.

# ruby_no_interface.rb

class Duck
def talk
puts '‘Quack! Quack!'
end

end y / BUbyB -
class Bird
def talk
puts Tweet-tweetl
end
end

def talk_talk(animal)
animal.talk
animal.talk

end

a_duck = Duck.new
talk_talk(a_duck)
a_bird = Bird.new
talk_talk(a_bird)




Ruby : a Dynamic Ty

Benefits : Simplicity
and Flexibility

Ruby Collections are more
simple and more flexible to
use than their Java
counterparts :

- no need for downcast

- support for heterogeneous
elements

selfreflexion.free.fr

# ruby_menagernie.rb ' Ruby

rogrammer’s Best Friend

class Duck
def talk
puts 'Quack! Quack!’
end

def walk
puts "Walking like a duck!’
end
end

class Bird
def talk
puts Tweet-tweet!'
end

def fly
puts Flying like a bird!"
end
end

class Rabbit
def jump
puts "Jumping like a rabhit!’
end
end

# Putting a duck, a kird, and a rabbit in an array
menagerie = {"my duck"=>Duck.new, "my hird"=>Bird.new, "my rabhit"=>Rabhit.new}

# Gef the duck

duck = menagerie["'my duck"] # no need for downcast to a Duck |
duck.talk

duck.walk

# Gef the bird

bird = menagerie["my bird"] # no need for downcast to a Bird !
bird.talk

fird.fly

# Gef the rabbif
rabhit = menagerie["my rabhit"] # no need for downcast to a Rabbit !
rabhit.jump




Ruby : a Dynamic Typ

Java untyped
collections

support
heterogeneous
elements but

require
downcast.
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f JavalUntypedMenagerie java (
import java.lang.System; ‘,_S)
import java.util.HashMap; ‘«-E_-'_I
import java.util.Map; ]a\fa'
class Duck { e

public void talk() {

System.out.printin{"Quack! Quack!™);
}

public void walk() {
System.out.printin{"Walking like a duck!");
}
h

class Bird {
public void talk() {
System.out.printin{" Tweet-tweetl");
}

public void fly() {
System.out.printin{"Flying like a bird!");
}
h

class Rabbit {
public void jump() {
System.out.printin{"Jumging like a rabhitl™);
}
h

public class JavalntypedMenagerie {
public static void main{String([] args) {
Map menagerie = new HashMap();
menagerie.put{"my duck”, new Duck({));
menagerie.put("my bird”, new Bird());
menagerie.put("my rabbit", new Rabbit());

Cbject duckObject = menagene.get("my duck");
Il downcast is needed !

Duck duck = (Duck)duckObject;

duck.talk();

duck.walk():

Object birdOhject = menagerie.get("my bird");
Il downcast is needed !

Bird bird = (Bird)hirdOhject;

bird.talk();

bird.fly();

Cbject rabbitObject = menagerie.get("my ralbit™);
Il downcast is needed |

Rabbit rabbit = (Rahbit)rabhitObject;
rabbitjump();

h

Java typed
collections do

not support
heterogeneous
elements but
avoid (most)
downcast.

I JavaTypedMenagerie java (
import java.lang.System; .»__(.
import java.util. HashMap; ';:_')
impaort java.util. Map; J‘;:‘T—'g
interface TalkingAnimal { s
void talk();
}
class Duck2 implements TalkingAnimal {
public void talk() {
System.out.printin{"Quack! Quack!™);
}

public void walk() {
System.out.printin("Walking like a duck 1");
H
h

class Bird2 implements TalkingAnimal {
public void talk() {
System.out.printin("Tweet-tweet!l”);

}

public void fly() {
System.out.printin{"Flying like a bird I);
}
h

class Rabhit2 {
public void jump() {
System.out.printin{"Jumping like a rabbit!l");
H
h

class JavaTypedMenagerie {
public static void main{3tring[] args) {
Map<String, TalkingAnimal> menagerie =
new HashMap<String, TalkingAnimal=>();

menageriz.put("my duck”, new Duck2());
menagerie.put("'my bird”, new Bird2());

M menagerie.put("my rabbit”, new Rabbit2());
/i cannot put 2 Rabbit2 (type mismatch)

TalkingAnimal duckOhject = menagerie.get("my duck”);
duckOhject.talk(); # a talking animal can talk

I downcast is needed for other capabhility

Duck? duck = (Duck2)duckObject;

duck.walk():

TalkingAnimal birdObject = menagerie.get{"my bird");
birdObject.talk(); # a talking animal can talk
/Il downcast is needed for other capability
Bird2 bird = (Bird2)birdOhject;
bird.fly();
}

h




Ruby : a Dynamic Typ

Drawbacks ?

Static Typing Language Compile Time Checking

vs. —, vs.

Dynamic Typing Language but : Runtime Checking

» Compiling doesn't mean it executes properly
» The only guarantee of correctness, ..., is whether it passes all the
tests that define the correctness of your program

- What we need is strong testing, not "strong" typing

"Strong" Typing vs. Strong Testing
(Bruce Eckel, author of "Thinking in C++", "Thinking in Java", "Thinking in Python")
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Ruby : a Dynamic Typi

You can create a large, complex and safe system with
a (good) dynamic language.

Example :

-
[ i (A.K. Erlang but also ERicsson LANGuage)
ERLANG

A functional and dynamic typing language designed by Ericsson to
support distributed, fault-tolerant, soft-real-time, non-stop
applications.
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Ruby : a Dynamic Typ

Safe Type Conversion
(a.k.a. "Strong Typing")

Rub
# ruby_strong_typing.rb a phaec A

foo=2

Type Conversion in Ruby is bar =2 3

# Safe conversion from Fixnum to Float

. acme = foo / bar
automatically per'for"m.ed only e aome
if it is safe.

foo ="4";

bar=2.5;

acme = foo + bar; # TypeError exception !
puts acme

<?php // php_weak_typing.php

Conversely, PHP and PERL oo o
perform error prone automatic Sbar=72;

. $acme = $foo + $bhar,
conversion. echo "$acme\n"; // outputs 6

(lack of exception support from $foo = "Hello World";
$acme = $foo + $bar;

dC(y one ? lack of excepfion echo "$acme\n"; // outputs 2 !!
7>
culture ?)
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Ruby : a Dynamic T

. #4 Rub
# ruby_coercion.rb ‘ ALY peirins

class Complex

def initialize(r, im)

@r=r

A Ruby custom class @im = im
. end
may however define a
. ep . # conversion to a string
safe conversion (if it 4 def to_str
# "#l{@r} + #H@im}i”
really makes sense). 4 end
end

# creates an instance of Complex

¢ = Complex.new(2, 2)

# TypeError exception unless to_str is defined
msg = "Complex number : "+ ¢

puts msg
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a Ruby : an Object-Oriented
Language
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Ruby : an Object-Orie

&8 Ruby

A Programmer’s Best Friend

# ruby_full_object.rb

Everything in Ruby puts 'a string'.class

puts 3 class

IS ObJeC'l' . # literal syntax for creating an array

a=1[1, "hello"]

# Equivalent to

# a = Array.new
#a << 1 << "hello"

Built-in classes have a puts a.class
. . puts a.inspect
dedicated and friendly
# literal syntax for creating a hash

" . "
syntax ("syntactic sugar"). h={ keyl=> 1, "key2" => "hello"}
# Equivalent to
# h = Hash.new
#h[ key1] =1
# h["key2"] = "hello"
puts h.class
puts h.inspect

# literal syntax for creating a regular expression
re =/e/

# Equivalent to

# re = Regexp.new('e’)

puts re.class

puts "Hello" =~ re # returns 1 the position of e
puts "Allo" =~ re # returns nil for not found
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Ruby : an Object-Orie

50 )

Top level
functions are in
fact private
methods of the
'main' object.

Ruby is a fully OO
language that can
masquerade as a
procedural language !
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# ruby top level func.rb
puts self.inspect
# define 2 top level functions
def my hello
puts "Hello"
end
def my_goodbye
puts "Goodbye"
end

# call these 2 functions

my_hello
my_goodbye

# search these 2 functions within the private functions of 'main’

my_functions = private_methods.select { |m| m=~/my _/}

puts my_functions.inspect

&3 Ruby
A Programmer’s Best Friend




Ruby : an Object-Ori:

i

The primary goal of OO is to reflect real
world :

* inheritance : specific / general relationship

» encapsulation : the inside is protected
from the outside
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Ruby : an Object-Orie

Rub

A Programuner’s Best Friend

a

# ruby_encapsulation.rb

class HelloWorld
attr_accessor :an_attribute
# Generates the following accessors

Ruby ensures encapsulation :

# def an_attribute()

- an attribute is always private. [ @an_attribute
The access to the attribute are # def an_attribute=(value)
. # @an_attribute = value
possible only through methods #end
("accessors"). def initialize
@an_attribute = "?"
- an attribute can be defined only end.
Wl*hln ITS CIC(SS deflnl'l'lon # creates an instance of HelloWorld

c = HelloWorld.new

# tries to access directly to the attribute
# msg = c.@an_attribute

# sets the value of the attribute

Ruby's accessors look like real c.an_attribute = "Hello World"
. . # eq. to c.an_attribute=("Hello World")
GTTr' bUTeS (RUby SynTGCTI C Sugar' # gets the value of the attribute

puts c.an_attribute

C(gCll n) l # eq. to puts c.an_attribute()

# tries to create an attribute from the outside
# c.@other_attribute = "Goodbye World"
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Ruby : an Object-Orie

# python_encapsulation.py = plzlthon

class HelloWorld:

PY"'hon iSs more lax | def _init_ (self):

self.an_attribute = "?"

def print_message(self):
print self.an_attribute

Python has no visibility
. # creates an instance of HelloWorld
mechanism | ¢ = HelloWorld()

# calls a method accessing the attribute
c.print_message

# violates the encapsulation principle of a Class
# reads the attribute

msg = c.an_attribute

print msg

# vrites the attribute
c.an_attribute = "Hello World"
print c.an_attribute

# violates again the encapsulation principle of a Class

c.other_attribute = "Goodbye World"
print c.other_attribute
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Ruby : an Object-Ori:

i

For Ruby (unlike C++
and Java) :

- private really
means private

Another instance of
the same class / a
derived class cannot
access to a private
member

- protected means

accessible only

within a family
Another instance of
the same class / a
derived class can

access fo a
protected member

selfreflexion.free.fr

&3 Ruby

A Programmer’s Best Friend

# ruby_privacy.rb

class Person
def initialize(info)
@private_info = info
end

def display
puts @private_info
end

def exchange(other)

# works only if accessors are protected
self.private_info, other.private_info =
other.private_info, self.private_info

end

# private

protected

attr_accessor :private_info
end

# creates two Persons

p1 = Person.new("Person1")
p1.display

p2 = Person.new("Person2")
p2.display

p1.exchange(p2)
p1.display
p2.display

class Person {

/I JavaPrivacy.java ((
import java.lang.System;

private String privatelnfo;

public Person(String info) {
privateInfo = info;

}

public void display() {
System.out.printin(privatelnfo);

}

public void exchange(Person other) {
/I another instance of the same class
// has access to private members !
String temp = privatelnfo;
privatelnfo = other.privatelnfo;
other.privatelnfo = temp;

}

B

class JavaPrivacy {

public static void main(String[] args) {
Person p1 = new Person("Person1");
pl.display();
Person p2 = new Person("'Person2");
p2.display();

pl.exchange(p2);
p1.display();
p2.display();




Ruby : an Object-Ori:

i

Java's single inheritance is annoying :
reusing code from another class
requires adapter code.

C++ multiple inheritance is powerful
but is very complex.

Ruby's mix-in feature provides the
power of multiple inheritance without
its complexity.
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iy Rub
# ruby_mixins.rb ﬂ Apmgmymesrmm

module Walking
def walk
puts inspect + " can walk"
end
end

class Human
end

class Man < Human
# a man can walk
include Walking
end

class Baby < Human
# a baby is too young for walking
end

class Animal
end

class Duck < Animal
# a duck can walk also
include Walking

end

# creates a man and a duck
m = Man.new
m.walk

d = Duck.new
d.walk




Ruby : an Object-Ori:

i

You're not forced to derive a
class just to extend its
capabilities.

You can reopen it !

Benefits :

You use naturally the same
class.

Useful also if you do not
control how objects are
created (you cannot instantiate
a derived class instead of the
base class).
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a EUby’B Friend
# ruby open_class.rb ’

s1 = "Hello, Real World !"
puts s1

# Reopen the built-in String class
# to add a funny method
class String
def very useful _change
self.gsubl(/e/, 'a’)
self.gsubl(/o/, 'U’)
end
end

puts s1.very useful _change




Ruby : an Object-Ori:

i

If you reopen a class and add methods to it, all existing
instances will benefit from them.

But you can also just add methods to a given instance if you

don't want to impact other instances.
. a Ruby
# ruby_singleton_class.rb

s1 ="Hello, Real World I"
s2 = "Goodbye I"
puts s1, s2

# Just add the funny method only for s1!
def s1.very _useful change
self.gsubl(/e/, 'a’)
self.gsubl(/o/, 'U')
end

puts s1.very useful change
# puts s2.very _useful_change # NoMethodError exception !

DRb (Distributed Ruby) uses this feature to indicate whether an object
will be transmitted by value or by reference (through a module inclusion).
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a Ruby : a good taste of
Functional Programming
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Functional programming languages are a class of languages designed to
reflect the way people think mathematically, rather than reflecting the

underlying machine. [Goldberg]

"Functional programming is a style of programming that emphasizes the
evaluation of expressions, rather than execution of commands.

The expressions in these language are formed by using functions to combine
basic values.

A functional language is a language that supports and encourages
programming in a functional style." [comp. lang. functional FAQ]

"A functional language does not allow any destructive
operation — one which overwrites data — such as assignment.

Purely functional languages are free of side effects, i.e.,

invoking a function has no effect other than computing the value returned by
the function." [NIST]
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Functional F

[ |
unctional Progre
#ruby_fp_examples.rb

Rub

A Programuner’s Best Friend

o

» Every symbol is final in (pure)
Functional Programming

x = f(y) just means wherever you
have x, you can replace it with
f(y) and vice-versa.

- Repetition is expressed via
recursion.

- Higher-Order Function : a
function that takes / returns
functions as parameters

- Stack is the rule (over Heap).

Benefits :

* Unit Testing is easier (no side-
effects)

» Concurrency is provided as free
(e.g. ERLANG)
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#f1(x) = 3"
f1 =lambda { |x| 2*x }

# f1 is not expected/allowed to be bound to another thing in FP

puts f1[2]

# factorial in a functional way
# (recursion, stack, no assignment)
factorial =lambda { [n| n==0 ? 1 : n*factorial[n-1] }

puts factorial[(], factorial[5]

# factorial in an imperative way
# (loop, assignment)
def imperative_factorial(n)
return 1 if n ==
fact=1
foriin(1..n)
fact = fact*i
end
fact
end

puts imperative_factorial(0), imperative_factorial(5)

# higher-order function
def compose(f, g)

lambda { |*args| fl[g[*args]] }
end

gl =lambda { |x]| 2+x } #g1(x) = 2+x
h1 = compose(f1, g1) #h1(x) =f1(g1(x))
puts h1[2] #h1(2]=> 12

g2 =lambda { |x, y| x*y } #g2(x,y) = x+y
h2 = compose(f1, g2) #h2(x,y) = f1(g2(x,y))
puts h2[5,7] # h2(5,7) => 36




Functional

()

s

Ruby is not a (pure) Functional
Programming Language but it

Ruby methods notably from the
Enumerable module take an
anonymous function as a
parameter : a Ruby block.

You can write Functional
Programs in Ruby if you avoid
side-effects.

favours Functional Programming.

Rub
#ru by_fp_pr omotion.rb a ApmgmmnX's Best Friend

# an array of values
values =[1, 2, 3, 4, 5]

# outputs each value
sum = values.each { |elem| print elem }
puts

# sum the values from the array
sum = values.inject(0) { |acc, elem| acc+elem }
puts sum

# creates a new array of values
other_values = (1..5).inject([]) { |acc, elem| acc+[elem*] }
puts other_values.inspect

# creates an array of values that are less than 3
lessthan3_values = values.select { |elem| elem < 2 }
puts lessthan3_values.inspect

Note : A pure Functional Language must interface with the "real" side-effects

world for Graphics, Input/Output.
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Functional F

)0
////

Ruby Blocks are
much easier
than Java
classes for
implementing
callbacks.

Ruby Blocks are
real closures :
they capture
their context.
They allow easy
communication
between the
block and its
context.

selfreflexion.free.fr

#8 Ruby

A Programuner’s Best Friend

# ruby_callback.rb

class Button
attr_reader :id

def initialize(id)
@id =id
end

def attach(&block)
@block = block
end

def click
# The button will be passed fto the callback
# This is the contract for the callback
@block.call self
end
end

b1 = Button.new("Button1")
b1.attach { |b] puts "#{b.id} clicked I" }

n=0

b2 = Button.new("Counter Button")

# Ruby blocks are closures.

# They capture their environment (e.g. n variable).
b2.attach { |b| n += 1; puts "Counter = #{n} from "#{b.id}" }

# Simulates clicks on buttons
b1.click

b2.click

b2.click

puts "n = #{n}"

I JavaCallback.java

import java.lang.System; ()
R

// The ButtonCallback interface —_—

interface ButtonCallback { ]ava

void onClick(Button b);
}

// The Button interface

interface Button {
String id();
void attach(ButtonCallback cb);
void click();

}

{// The Button implementation
class Buttonlmpl implements Button {
String id;
ButtonCallback cby;
public Buttonlmpl(String id) { this.id =id; }
public String id() { return id; }
public void attach{ButtonCallback cb) { this.cb =cb; }
public void click() { ch.onClick(this); }
}

// The ButtonCallback Counter implementation
class ButtonCallbackCounterlmpl implements ButtonCallback {
int n;
public ButtonCallbackCounterlmpl(int n) { this.n =n; }
public int counter() { return n; }
public void onClick(Button b) {
n+=1;
String completeMessage = "Counter =" +n + " from ™ + b.id() +
System.out.printin{fcompleteMessage);
}
}

class JavaCallback {
public static void main(String[] args) {
Button b1 = new ButtonImpl("Button1");
/f Creates and attaches an anonymous class for the basic button callback
b1.attach{new ButtonCallback() {
public void onClick(Button b) {
String completeMessage = """ + b.id() + " clicked I";
System.out.printin{completeMessage);
}
W

Button b2 = new ButtonImpl("Counter Button");

// Creates a dedicated callback class for storing the number of clicks
ButtonCallbackCounterlmpl chc = new ButtonCallbackCounterlmpl(0);
b2.attach{cbc);

b1.click();
b2.click();
b2.click();
System.out.printin{cbc.counter());




a Ruby : a highly Reflective
Language
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Meta-programming :
The writing of programs that write or manipulate
other programs (or themselves).

Benefit : Less code is written manually.

Meta-language
The language in which the meta-program is written.

Reflective Language

A programming language whose meta-language is
itself.
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Meta-programming & Encapsulation :

* You're normally force to follow encapsulation.
This is the normal and preferred way.

* But if you have a good reason, you can break
encapsulation with Ruby meta-programming
features.
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Ruby

The classical example of Ruby meta-
programming :

attr_reader, attr_writer,
attr_accessor.

These are just class methods that
generate respectively read, write, both
read and write accessors for a given

instance variable.

& Rub
# ruby_a trr_exampfe_ rb ‘ APragmmme}{’s Best Friend

class MyClass
attr_reader :fixed_message
attr_accessor :changeable _message

def initialize
@fixed_message = "Hello!"
end
end

o = MyClass.new

puts o.fixed_message
o.changeable_message = "A message!"
puts o.changeable_message
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&8 Ruby

A Programiner’s Best Friend

# ruby_attr_definition.rb

# Reopen the class Class to add Java like accessors generator
class Class
# generator method (string evaluation version)
def string_atir accessor(name)
class_eval <<-"end_eval"
def get_#{name}
@#{name}
end

def set_#{name}{value)
@#name} = value
end
end_eval
end
# generator method (code version)
def code atir accessor(name)
class_eval do
define_method "get_#{name}" do
instance_variable_get "@#{name}"
end

define_method "set_#{name}" do |value|
instance_variable_set "@#{name}", value
end
end
end
end

class MyClass
# string_aftr_accessor attribute
code_attr_accessor :attribute

def initialize(valug)
@attribute = value
end
end

a = MyClass.new("Hello")
puts a.get_attribute()
a.set_attnbute("Goodbye")
puts a.get_attribute()




You can also generate code
automatically upon some events :

- a missing method is called on an
object

- a module is being mixed-in

- a class is being inherited

- a method is being added, removed

AOP (Aspect Oriented Programming)
can be implemented
straightforwardly in Ruby !
(aspectr).
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# ruby_logger.rb Ruby

class Logger

# keeps track of methods that have already been treated

@@methods =[]

def self.method_added(method_sym)
# skip the original methods and the decorated ones
unless @@methods.find { || e == method_sym }

orig_method_sym = "orig_#{method_sym}".to_sym
@@methods << method_sym << orig_method_sym

# alias the method before redefining it
alias_method orig_method_sym, method_sym

define_method method_sym do |*args|
puts "-Entering #{method_sym}"
send orig_method_sym, *args
puts "-Exiting #{method_sym}"

end

end
end
end

class MyClass < Logger
def hello(message)
puts "Hello #{message}"
end

def goodbye(message)
puts "Goodbye #{message}"
end

a = MyClass.new
a.hello("World")
a.goodbye("My Friend")

A Programmer’s Best Friend




a Ruby : a base for creating

A
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Syntax does matter !

Ruby's syntactic sugar is one of the key point that makes DSL
in Ruby very easy.

&8 Ruby
# ru b y_ d S l" rb ‘ A Programumer’s Best Friend

# Ruby doesn’t require parenthesis around the method argument
def display arg

puts arg.inspect
end

display "Hello"
# Equivalent to display("Hello")

# The braces are optional for a hash parameter

display :title => "Message", :description => "Hello"
# Equivalent to
# display({display title => "Message", :description => "Hello"})
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Ruby : a base for ¢

Example of DSL in Ruby : Rake

&3 Ruby
# ruby rake dsl.rb ‘ . . .
- A Build Language written in Ruby.
require 'rake' Benefits :
task ‘taskA do * Readable syntax.
puts "Task A stuff"
end » Full access to the power of Ruby.

task looks like a keyword but is just a

task :taskB => :taskA d
ast 1o s e regular Ruby method

puts "Task B stuff"

end the task name (:taskC) and
task taskC =>W‘ the task requisites (:taskA)

puts "Task C stuff" are just defined by a hash

end
What the task has to do is just
task :taskD => [:taskB, :taskC] do defined by a Ruby block
puts "Task D stuff"
end
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Ruby : a base fc

Ruby open class is
another key point
for DSL.
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&3 Ruby

A Programmer’s Best Friend

# ruby_time_dsl.rb

# Reopen the built-in Fixnum to represent time in seconds
class Fixnum
def day
self.hour * 24
end

def hour
self.minute * 60
end

def minute
self * GO
end

def second
self
end
end

# Reopen the built-in Time to add useful methods
class Time
def tomorrow

self + 1 .day
end
def yesterday
self - 1.day
end
end

# Time is a built-in class

t=Time.now # Gives the current time
puts t

puts t.tomorrow

puts t + 2.day + 2. hour




LA

More Ruby vs. C++, Java,
Python, 6roovy, PHP
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+ C++ is statically typed,

+ C++ is complex,

- C++ meta-programming is only static (template).
+ C++ doesn't have introspection.

Conversely, Ruby has garbage collection but is
slower.
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» Java is statically typed.
- Java supports only single inheritance.

» Java meta-programming is only static (before
class loading and through Javassist) but Java
supports introspection.

- Java is too verbose.

- Java doesn't have neither (yet) closure nor
favours Functional Programming.
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or
i

@, python

Python has similar capabilities as Ruby but :
- is less Object-Oriented (e.g. encapsulation)

* lacks uniformity (e.g. function vs. method)

* meta-programming is less favoured / natural
» doesn't enable DSL creation

Python has a different philosophy :

"There is only one way to do it"
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PHP (PHP: Hypertext Preprocessor) : @

A reflective and dynamic programming language
originally designed for producing dynamic Web pages
and remote application software.

Drawbacks :

* OO has been added lately and is still not yet
complete (no class method ...)

* The library is procedural |

* No namespace support | Everything is in the global
space |
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Groovy has been created to add dynamic-style

language features on top of Java. E H

Heavily influenced by Ruby !

Not (yet?) as powerful as Ruby (open class, ..).
Syntax simplification limited to remain close to Java.

It seems to be too late for Groovy :

* Charles Nutter (JRuby core developer) : "we believe Ruby is
a better language than we could design ourselves (or design
based on Java with dynamic language features) and so we aim
to support pure Ruby as closely as possible"

* Ruby has now a greater community and audience
(conferences, library of books, ..)

* Ruby is supported by SUN (through JRuby)
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a More on Ruby
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The current official implementation (1.8.x) :
- an interpreter
- green threads

The Ruby 2.0 official implementation -

YARV (Yet Another Ruby Virtual Machine) :

» a Virtual Machine with specific Ruby byte-code
* native threads

Current measures : 3.5x faster than interpreter
version.

Ruby 1.9 expected for Christmas 2007.
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An implementation of Ruby 1.8.x on the Java
Virtual Machine :

- speed of the Java VM
* native threads

+ Benefit : JRuby provides the access of Java
platform and libraries to Ruby.

+ Drawback : YARV will likely be more effective
than JRuby.
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Ruby is for Java what Java is for C/C++ |
There are good Java, C/C++ frameworks/libraries.

Ruby typically wraps and/or integrates these
technologies (e.g. JRuby, RubySQLite, ..).
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That's all folks !
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